Structures of oligomeric silsesquioxanes (POSS)

Polyhedral Silsesquioxanes

Research on compounds containing the Si–O bond has for years been dominated by silicon dioxide, minerals containing repeating SiO₂ fragments, and silicones composed of repeating R₂SiO units (R = alkyl or phenyl). Over the past 20–30 years, there has been a noticeable increase in studies on silsesquioxanes containing the RSiO₁.₅ unit. These compounds, due to the presence of both an inorganic fragment and an organic group, possess hybrid properties. The inorganic Si–O–Si fragment imparts chemical and thermal resistance to these compounds, while the organic R group increases their solubility and provides appropriate reactivity. A wide range of polymeric structures with the general formula (RSiO₁.₅)ₙ can be synthesized, but the most interesting are those with polyhedral architectures.⁴

Polyhedral oligomeric silsesquioxanes (POSS) are three-dimensional organosilicon compounds with the general empirical formula (RSiO₁.₅)ₙ (where R = H, alkyl, alkenyl, or aryl; n = 6, 8, 10, 12). A wide variety of POSS structures can be obtained, such as ladder-like (Figure 3, part b), cage-like structures differing in the number of silicon atoms (Figure 3, part c), and open cages (Figure 3, parts d–f). Polyhedral silsesquioxanes exhibit high chemical and thermal resistance,⁵–¹¹ making them useful precursors for the production of functional materials such as porous materials,¹²–¹⁸ catalysts,¹⁹–²¹ superhydrophobic materials,²²-³³ luminescent materials,³⁴-⁴² composites,⁴³–⁵² and others.⁵³

Through appropriate modification of POSS side groups, it is possible to "tune" their solubility, which allows for the preparation of soluble silsesquioxane nanoparticles with sizes up to 5 nm.⁵⁴,⁵⁵ In contrast to organosilicon materials obtained via the sol–gel method—which in most cases exhibit undefined structures (Figure 3, part a)—the use of polyhedral silsesquioxanes allows for better control over the structure and morphology of the resulting nanoparticles. Due to their well-defined three-dimensional architecture, the most interesting group of silsesquioxanes are the cage-type compounds (Figure 3, part c). It is possible to obtain cages of various geometries and sizes, such as octamers, decamers, or dodecamers (denoted as T8, T10, T12). Their unique properties are related to their three-dimensional core and nanometric size, which allows for the emergence of properties not observed at the macroscale.⁴

 

Polyhedral oligomeric silsesquioxanes (POSS)

Nomenclature and Designations
The English term silsesquioxane derives from Latin and can be interpreted as follows: silicium (silicon), sesqui (one and a half), oxygenium (oxygen), indicating that the ratio of oxygen atoms to silicon atoms is 1.5.⁵⁶ In Polish-language literature, the term is commonly adapted as silseskwioksan. The use of systematic names for polyhedral silsesquioxanes can be cumbersome; therefore, the nomenclature typically used for siloxanes is often applied.⁵⁷ This classification distinguishes five types of silicon atoms (Figure 4). The "M" type denotes a silicon atom bonded to three organic groups and one oxygen atom. A "D"-type silicon atom is bonded to two oxygen atoms, a "T"-type to three oxygen atoms, and a "Q"-type to four oxygen atoms.⁵⁶

Figure 4. Types of silicon atom connections (R = hydrogen, alkyl, or phenyl).

Si–O bonds can form either siloxane groups (Si–O–Si) or silanol groups (Si–OH). To distinguish between them, a superscript is used to indicate the number of Si–O–Si connections formed by a silicon atom. For example, T³ denotes a silicon atom bonded to one organic group and three siloxane linkages. Polyhedral silsesquioxanes contain T³-type silicon atoms. The number of silicon atoms is given as a subscript. The designation T₈R₈ or R₈T₈ refers to an octameric hexahedral silsesquioxane containing eight organic side groups or hydrogen atoms. The formula Me₈T₈ corresponds to octamethyl-octasilsesquioxane, a compound with the systematic name octamethyl-pentacyclo[9.5.1.1³,⁹.1⁵,¹⁵.1⁷,¹³]octasiloxane, shown in Figure 5.

The material presented in this dissertation has been or will be published in English. Therefore, the consistent use of the English number format (with a period as the decimal separator) was adopted, which is especially convenient in the context of NMR spectra interpretation.

Figure 5. Structure of octamethyl-octasilsesquioxane (Me₈T₈).

Reference

(4)       Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chem. Rev. 2010, 110 (4), 2081–2173. https://doi.org/10.1021/cr900201r.

(5)       Rücker, C.; Kümmerer, K. Environmental Chemistry of Organosiloxanes. Chem. Rev. 2015, 115 (1), 466–524. https://doi.org/10.1021/cr500319v.

(6)       Fina, A.; Tabuani, D.; Carniato, F.; Frache, A.; Boccaleri, E.; Camino, G. Polyhedral Oligomeric Silsesquioxanes (POSS) Thermal Degradation. Thermochim. Acta 2006, 440 (1), 36–42. https://doi.org/10.1016/j.tca.2005.10.006.

(7)       Han, Z.; Xi, Y.; Kwon, Y. Thermal Stability and Ablation Behavior of Modified Polydimethylsiloxane-Based Polyurethane Composites Reinforced with Polyhedral Oligomeric Silsesquioxane. J. Nanosci. Nanotechnol. 2016, 16 (2), 1928–1933.

(8)       Barczewski, M.; Chmielewska, D.; Dobrzyńska-Mizera, M.; Dudziec, B.; Sterzyński, T. Thermal Stability and Flammability of Polypropylene-Silsesquioxane Nanocomposites. Int. J. Polym. Anal. Charact. 2014, 19 (6), 500–509. https://doi.org/10.1080/1023666X.2014.922268.

(9)       Qian, Y.; Wei, P.; Zhao, X.; Jiang, P.; Yu, H. Flame Retardancy and Thermal Stability of Polyhedral Oligomeric Silsesquioxane Nanocomposites. Fire Mater. 2013, 37 (1), 1–16. https://doi.org/10.1002/fam.1126.

(10)     Chen, S.; Li, X.; Li, Y.; Sun, J. Intumescent Flame-Retardant and Self-Healing Superhydrophobic Coatings on Cotton Fabric. ACS Nano 2015, 9 (4), 4070–4076. https://doi.org/10.1021/acsnano.5b00121.

(11)     Zucchi, I. A.; Galante, M. J.; Williams, R. J. J.; Franchini, E.; Galy, J.; Gérard, J.-F. Monofunctional Epoxy-POSS Dispersed in Epoxy−Amine Networks:  Effect of a Prereaction on the Morphology and Crystallinity of POSS Domains. Macromolecules 2007, 40 (4), 1274–1282. https://doi.org/10.1021/ma062188y.

(12)     Xing, Y.; Peng, J.; Xu, K.; Lin, W.; Gao, S.; Ren, Y.; Gui, X.; Liang, S.; Chen, M. Polymerizable Molecular Silsesquioxane Cage Armored Hybrid Microcapsules with In Situ Shell Functionalization. Chem. – Eur. J. 2016, 22 (6), 2114–2126. https://doi.org/10.1002/chem.201504473.

(13)     Wang, Z.; Wang, D.; Qian, Z.; Guo, J.; Dong, H.; Zhao, N.; Xu, J. Robust Superhydrophobic Bridged Silsesquioxane Aerogels with Tunable Performances and Their Applications. ACS Appl. Mater. Interfaces 2015, 7 (3), 2016–2024. https://doi.org/10.1021/am5077765.

(14)     Alves, F.; Scholder, P.; Nischang, I. Conceptual Design of Large Surface Area Porous Polymeric Hybrid Media Based on Polyhedral Oligomeric Silsesquioxane Precursors: Preparation, Tailoring of Porous Properties, and Internal Surface Functionalization. ACS Appl. Mater. Interfaces 2013, 5 (7), 2517–2526. https://doi.org/10.1021/am303048y.

(15)     Guo, H.; Meador, M. A. B.; McCorkle, L.; Quade, D. J.; Guo, J.; Hamilton, B.; Cakmak, M.; Sprowl, G. Polyimide Aerogels Cross-Linked through Amine Functionalized Polyoligomeric Silsesquioxane. ACS Appl. Mater. Interfaces 2011, 3 (2), 546–552. https://doi.org/10.1021/am101123h.

(16)     Lee, J. H.; Lee, A. S.; Lee, J.-C.; Hong, S. M.; Hwang, S. S.; Koo, C. M. Multifunctional Mesoporous Ionic Gels and Scaffolds Derived from Polyhedral Oligomeric Silsesquioxanes. ACS Appl. Mater. Interfaces 2017, 9 (4), 3616–3623. https://doi.org/10.1021/acsami.6b12340.

(17)     Wang, J.; Zhang, C.; Yang, C.; Zhang, C.; Wang, M.; Zhang, J.; Xu, Y. Superhydrophilic Antireflective Periodic Mesoporous Organosilica Coating on Flexible Polyimide Substrate with Strong Abrasion-Resistance. ACS Appl. Mater. Interfaces 2017, 9 (6), 5468–5476. https://doi.org/10.1021/acsami.6b14117.

(18)     Sangtrirutnugul, P.; Chaiprasert, T.; Hunsiri, W.; Jitjaroendee, T.; Songkhum, P.; Laohhasurayotin, K.; Osotchan, T.; Ervithayasuporn, V. Tunable Porosity of Crosslinked-Polyhedral Oligomeric Silsesquioxane (POSS) Supports for Palladium-Catalyzed Aerobic Alcohol Oxidation in Water. ACS Appl. Mater. Interfaces 2017, 9 (14), 12812–12822. https://doi.org/10.1021/acsami.7b03910.

(19)     Rozanska, X.; Fortrie, R.; Sauer, J. Size-Dependent Catalytic Activity of Supported Vanadium Oxide Species: Oxidative Dehydrogenation of Propane. J. Am. Chem. Soc. 2014, 136 (21), 7751–7761. https://doi.org/10.1021/ja503130z.

(20)     Quadrelli, E. A.; Basset, J.-M. On Silsesquioxanes’ Accuracy as Molecular Models for Silica-Grafted Complexes in Heterogeneous Catalysis. Coord. Chem. Rev. 2010, 254 (5–6), 707–728. https://doi.org/10.1016/j.ccr.2009.09.031.

(21)     Mohapatra, S.; Chaiprasert, T.; Sodkhomkhum, R.; Kunthom, R.; Hanprasit, S.; Sangtrirutnugul, P.; Ervithayasuporn, V. Solid-State Synthesis of Polyhedral Oligomeric Silsesquioxane-Supported N-Heterocyclic Carbenes/Imidazolium Salts on Palladium Nanoparticles: Highly Active and Recyclable Catalyst. ChemistrySelect 2016, 1 (16), 5353–5357. https://doi.org/10.1002/slct.201600878.

(22)     Wang, H.; Xue, Y.; Ding, J.; Feng, L.; Wang, X.; Lin, T. Durable, Self-Healing Superhydrophobic and Superoleophobic Surfaces from Fluorinated-Decyl Polyhedral Oligomeric Silsesquioxane and Hydrolyzed Fluorinated Alkyl Silane. Angew. Chem. Int. Ed. 2011, 50 (48), 11433–11436. https://doi.org/10.1002/anie.201105069.

(23)     Chinnam, P. R.; Wunder, S. L. Polyoctahedral Silsesquioxane-Nanoparticle Electrolytes for Lithium Batteries: POSS-Lithium Salts and POSS-PEGs. Chem. Mater. 2011, 23 (23), 5111–5121. https://doi.org/10.1021/cm2015675.

(24)     Douvas, A. M.; Van Roey, F.; Goethals, M.; Papadokostaki, K. G.; Yannakopoulou, K.; Niakoula, D.; Gogolides, E.; Argitis, P. Partially Fluorinated, Polyhedral Oligomeric Silsesquioxane-Functionalized (Meth)Acrylate Resists for 193 Nm Bilayer Lithography. Chem. Mater. 2006, 18 (17), 4040–4048. https://doi.org/10.1021/cm0605522.

(25)     Yang, S.; Mirau, P. A.; Pai, C.-S.; Nalamasu, O.; Reichmanis, E.; Lin, E. K.; Lee, H.-J.; Gidley, D. W.; Sun, J. Molecular Templating of Nanoporous Ultralow Dielectric Constant (≈1.5) Organosilicates by Tailoring the Microphase Separation of Triblock Copolymers. Chem. Mater. 2001, 13 (9), 2762–2764. https://doi.org/10.1021/cm0102786.

(26)     Romeo, H. E.; Fanovich, M. A.; Williams, R. J. J.; Matějka, L.; Pleštil, J.; Brus, J. Self-Assembly of a Bridged Silsesquioxane Containing a Pendant Hydrophobic Chain in the Organic Bridge. Macromolecules 2007, 40 (5), 1435–1443. https://doi.org/10.1021/ma062091b.

(27)     Yue, K.; Liu, C.; Guo, K.; Yu, X.; Huang, M.; Li, Y.; Wesdemiotis, C.; Cheng, S. Z. D.; Zhang, W.-B. Sequential “Click” Approach to Polyhedral Oligomeric Silsesquioxane-Based Shape Amphiphiles. Macromolecules 2012, 45 (20), 8126–8134. https://doi.org/10.1021/ma3013256.

(28)     Dopierała, K.; Bojakowska, K.; Karasiewicz, J.; Maciejewski, H.; Prochaska, K. Interfacial Behaviour of Cubic Silsesquioxane and Silica Nanoparticles in Langmuir and Langmuir–Blodgett Films. RSC Adv. 2016, 6 (97), 94934–94941. https://doi.org/10.1039/C6RA18255K.

(29)     Iacono, S. T.; Vij, A.; Grabow, W.; Smith, Jr., D. W.; Mabry, J. M. Facile Synthesis of Hydrophobic Fluoroalkyl Functionalized Silsesquioxane Nanostructures. Chem. Commun. 2007, No. 47, 4992–4994. https://doi.org/10.1039/b712976a.

(30)     Kapoor, M. P.; Sinha, A. K.; Seelan, S.; Inagaki, S.; Tsubota, S.; Yoshida, H.; Haruta, M. Hydrophobicity Induced Vapor-Phase Oxidation of Propene over Gold Supported on Titanium Incorporated Hybrid Mesoporous Silsesquioxane. Chem. Commun. 2002, No. 23, 2902–2903. https://doi.org/10.1039/B209392H.

(31)     Pan, A.; Yang, S.; He, L. POSS-Tethered Fluorinated Diblock Copolymers with Linear- and Star-Shaped Topologies: Synthesis, Self-Assembled Films and Hydrophobic Applications. RSC Adv. 2015, 5 (68), 55048–55058. https://doi.org/10.1039/C5RA08619A.

(32)     Sanil, E. S.; Cho, K.-H.; Hong, D.-Y.; Lee, J. S.; Lee, S.-K.; Ryu, S. G.; Lee, H. W.; Chang, J.-S.; Hwang, Y. K. A Polyhedral Oligomeric Silsesquioxane Functionalized Copper Trimesate. Chem. Commun. 2015, 51 (40), 8418–8420. https://doi.org/10.1039/C5CC01928A.

(33)     Wang, X.; Ye, Q.; Song, J.; Cho, C. M.; He, C.; Xu, J. Fluorinated Polyhedral Oligomeric Silsesquioxanes. RSC Adv. 2014, 5 (6), 4547–4553. https://doi.org/10.1039/C4RA15108A.

(34)     Suenaga, K.; Tanaka, K.; Chujo, Y. Heat-Resistant Mechanoluminescent Chromism of the Hybrid Molecule Based on Boron Ketoiminate Modified Octasubstituted Polyhedral Oligomeric Silsesquioxane. Chem. – Eur. J. 2017, 23 (6), 1409–1414. https://doi.org/10.1002/chem.201604662.

(35)     Xu, Q.; Li, Z.; Li, H. Water-Soluble Luminescent Hybrid Composites Consisting of Oligosilsesquioxanes and Lanthanide Complexes and Their Sensing Ability for Cu2+. Chem. – Eur. J. 2016, 22 (9), 3037–3043. https://doi.org/10.1002/chem.201504300.

(36)     Shen, R.; Feng, S.; Liu, H. Silsesquioxane-Based Luminescent PMMA Nanocomposites. RSC Adv. 2016, 6 (64), 59305–59312. https://doi.org/10.1039/C6RA10165H.

(37)     Sun, L.; Liu, Y.; Dang, S.; Wang, Z.; Liu, J.; Fu, J.; Shi, L. Lanthanide Complex-Functionalized Polyhedral Oligomeric Silsesquioxane with Multicolor Emission Covered from 450 Nm to 1700 Nm. New J. Chem. 2016, 40 (1), 209–216. https://doi.org/10.1039/C5NJ02105G.

(38)     Yu, T.; Wang, X.; Su, W.; Zhang, C.; Zhao, Y.; Zhang, H.; Xu, Z. Synthesis and Photo- and Electro-Luminescent Properties of Ir(III) Complexes Attached to Polyhedral Oligomeric Silsesquioxane Materials. RSC Adv. 2015, 5 (98), 80572–80582. https://doi.org/10.1039/C5RA16201G.

(39)     Chen, X.; Zhang, P.; Wang, T.; Li, H. The First Europium(III) β-Diketonate Complex Functionalized Polyhedral Oligomeric Silsesquioxane. Chem. – Eur. J. 2014, 20 (9), 2551–2556. https://doi.org/10.1002/chem.201303957.

(40)     Zhu, Y. K.; Guang, S. Y.; Su, X. Y.; Xu, H. Y.; Liu, X. Y. Highly Efficient and Stable Solid-State Luminescent Nanohybrids: Precise Architecture and Enhancement Mechanism. J. Mater. Res. 2013, 28 (8), 1061–1069. https://doi.org/10.1557/jmr.2013.36.

(41)     Aghajamali, M.; Iqbal, M.; Purkait, T. K.; Hadidi, L.; Sinelnikov, R.; Veinot, J. G. C. Synthesis and Properties of Luminescent Silicon Nanocrystal/Silica Aerogel Hybrid Materials. Chem. Mater. 2016, 28 (11), 3877–3886. https://doi.org/10.1021/acs.chemmater.6b01114.

(42)     Li, Z.; Kong, J.; Wang, F.; He, C. Polyhedral Oligomeric Silsesquioxanes (POSSs): An Important Building Block for Organic Optoelectronic Materials. J. Mater. Chem. C 2017, 5 (22), 5283–5298. https://doi.org/10.1039/C7TC01327B.

(43)     Zhou, H.; Ye, Q.; Xu, J. Polyhedral Oligomeric Silsesquioxane-Based Hybrid Materials and Their Applications. Mater Chem Front 2017, 1 (2), 212–230. https://doi.org/10.1039/C6QM00062B.

(44)     Prateek; Thakur, V. K.; Gupta, R. K. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Chem. Rev. 2016, 116 (7), 4260–4317. https://doi.org/10.1021/acs.chemrev.5b00495.

(45)     Pan, R.; Wang, L. L.; Shanks, R.; Liu, Y. The Influence of Trisilanolisobutyl POSS on Domain Microstructure of a Polyurethane Hybrid Composite: A Molecular Simulation Approach. Silicon 2016, 1–8. https://doi.org/10.1007/s12633-016-9463-3.

(46)     Miyauchi, S.; Imoto, H.; Naka, K. Fabrication of Polymer-Calcite Composite Thin Films by Phase Transition of Vaterite Composite Particles with Octacarboxy-Terminated T8-Caged Silsesquioxane. Polym. J. 2016, 48 (10), 1019–1027. https://doi.org/10.1038/pj.2016.69.

(47)     Knauer, K. M.; Jennings, A. R.; Bristol, A. N.; Iacono, S. T.; Morgan, S. E. Enhanced Surface Properties of Branched Poly(Ether Sulfone) from Semifluorinated Polyhedral Oligomeric Silsequioxanes. ACS Appl. Mater. Interfaces 2016, 8 (19), 12434–12444. https://doi.org/10.1021/acsami.6b01936.

(48)     Jiang, B.; Zhang, K.; Cai, Q.; Zeng, T.; Zhu, M. Effect of Homologous Nano-Composites on the Thermal Degradation of the Silicone Resin. Soft Mater. 2016, 14 (4), 288–296. https://doi.org/10.1080/1539445X.2016.1210638.

(49)     Czarnecka-Komorowska, D.; Sterzynski, T.; Dutkiewicz, M. Polyoxymethylene/Polyhedral Oligomeric Silsesquioxane Composites: Processing, Crystallization, Morphology and Thermo-Mechanical Behavior. Int. Polym. Process. 2016, 31 (5), 598–606. https://doi.org/10.3139/217.3243.

(50)     Bele, A.; Dascalu, M.; Tugui, C.; Iacob, M.; Racles, C.; Sacarescu, L.; Cazacu, M. Dielectric Silicone Elastomers Filled with in Situ Generated Polar Silsesquioxanes: Preparation, Characterization and Evaluation of Electromechanical Performance. Mater. Des. 2016, 106, 454–462. https://doi.org/10.1016/j.matdes.2016.06.010.

(51)     Tan, H.; Zheng, J.; Xu, D.; Wan, D.; Qiu, J.; Tang, T. Dependence of Melt Behavior of Star Polystyrene/POSS Composites on the Molecular Weight of Arm Chains. J. Phys. Chem. B 2014, 118 (19), 5229–5239. https://doi.org/10.1021/jp502946d.

(52)     Lin, O. H.; Mohd Ishak, Z. A.; Akil, H. M. Preparation and Properties of Nanosilica-Filled Polypropylene Composites with PP-Methyl POSS as Compatibiliser. Mater. Des. 2009, 30 (3), 748–751. https://doi.org/10.1016/j.matdes.2008.05.007.

(53)     Saparov, B.; Mitzi, D. B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 2016, 116 (7), 4558–4596. https://doi.org/10.1021/acs.chemrev.5b00715.

(54)     Kuroda, K.; Shimojima, A.; Kawahara, K.; Wakabayashi, R.; Tamura, Y.; Asakura, Y.; Kitahara, M. Utilization of Alkoxysilyl Groups for the Creation of Structurally Controlled Siloxane-Based Nanomaterials. Chem. Mater. 2014, 26 (1), 211–220. https://doi.org/10.1021/cm4023387.

Comments